首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25849篇
  免费   3104篇
  国内免费   1035篇
电工技术   708篇
综合类   1571篇
化学工业   11477篇
金属工艺   724篇
机械仪表   537篇
建筑科学   1705篇
矿业工程   299篇
能源动力   3357篇
轻工业   1773篇
水利工程   323篇
石油天然气   926篇
武器工业   63篇
无线电   920篇
一般工业技术   4519篇
冶金工业   504篇
原子能技术   175篇
自动化技术   407篇
  2024年   66篇
  2023年   650篇
  2022年   816篇
  2021年   1216篇
  2020年   1079篇
  2019年   1036篇
  2018年   784篇
  2017年   959篇
  2016年   889篇
  2015年   885篇
  2014年   1414篇
  2013年   1503篇
  2012年   1990篇
  2011年   1953篇
  2010年   1487篇
  2009年   1532篇
  2008年   1270篇
  2007年   1652篇
  2006年   1405篇
  2005年   1270篇
  2004年   1114篇
  2003年   984篇
  2002年   720篇
  2001年   616篇
  2000年   571篇
  1999年   399篇
  1998年   331篇
  1997年   245篇
  1996年   219篇
  1995年   179篇
  1994年   178篇
  1993年   148篇
  1992年   124篇
  1991年   73篇
  1990年   53篇
  1989年   36篇
  1988年   33篇
  1987年   16篇
  1986年   15篇
  1985年   13篇
  1984年   12篇
  1983年   7篇
  1982年   6篇
  1980年   7篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1959年   1篇
  1951年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Efforts to manufacture artificial cells that replicate the architectures, processes and behaviours of biological cells are rapidly increasing. Perhaps the most commonly reconstructed cellular structure is the membrane, through the use of unilamellar vesicles as models. However, many cellular membranes, including bacterial double membranes, nuclear envelopes, and organelle membranes, are multilamellar. Due to a lack of technologies available for their controlled construction, multilayered membranes are not part of the repertoire of cell-mimetic motifs used in bottom-up synthetic biology. To address this, we developed emulsion-based technologies that allow cell-sized multilayered vesicles to be produced layer-by-layer, with compositional control over each layer, thus enabling studies that would otherwise remain inaccessible. We discovered that bending rigidities scale with the number of layers and demonstrate inter-bilayer registration between coexisting liquid–liquid domains. These technologies will contribute to the exploitation of multilayered membrane structures, paving the way for incorporating protein complexes that span multiple bilayers.  相似文献   
52.
《Ceramics International》2021,47(18):25883-25894
Oily wastewater treatment is a global challenge due to the substantial amount of effluent resulted from many industrial and domestic activities. To overcome the challenge of using existing treatment approach and fouling, superoleophobic coatings were fabricated. In this study, a superoleophobic membrane surface was obtained using the sol-gel technique with perfluorooctanoate (PFO), poly (diallyl dimethylammonium chloride) (PDADMAC), and nanoparticles as complex-polymer nanocomposites. The effects of coating cycles on the surface structure, chemical properties, surface chemistry, and oleophobicity of the surface were examined using field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and oil contact angle measurement. The results showed that the coated layer successfully adhered to the substrate surface. However, the chemical stability with respect to oil contact angle (OCA) revealed a decline at pH 7 and pH 9 and maintained stability at pH 3. Besides, oil flux at 63.0 L/m2. h was achieved for PDADMAC-Al2O3/44 wt% PFO and the highest separation efficiency of 98% was obtained. Furthermore, the oil rejection decreases as the oil concentration increases from 1 to 3 g/L. OCA of 155° was obtained after 5 coating cycles. Apart from mitigating substrate fouling, the superoleophobic and superhydrophilic coating can be applied to a ceramic-based hollow fibre membrane and efficiently used for the separation of oil from oily wastewater.  相似文献   
53.
Chemical engineering systems often involve a functional porous medium, such as in catalyzed reactive flows, fluid purifiers, and chromatographic separations. Ideally, the flow rates throughout the porous medium are uniform, and all portions of the medium contribute efficiently to its function. The permeability is a property of a porous medium that depends on pore geometry and relates flow rate to pressure drop. Additive manufacturing techniques raise the possibilities that permeability can be arbitrarily specified in three dimensions, and that a broader range of permeabilities can be achieved than by traditional manufacturing methods. Using numerical optimization methods, we show that designs with spatially varying permeability can achieve greater flow uniformity than designs with uniform permeability. We consider geometries involving hemispherical regions that distribute flow, as in many glass chromatography columns. By several measures, significant improvements in flow uniformity can be obtained by modifying permeability only near the inlet and outlet.  相似文献   
54.
Porous alumina with a highly textured microstructure was fabricated by pulse electric current sintering (PECS) using alumina platelets. Highly oriented porous alumina with a porosity of 3%–50% was obtained by a pressure-controlled method of PECS. The properties of the highly textured porous alumina were measured in two directions. The nitrogen gas permeance and thermal conductivity at room temperature were higher in the direction along the platelet length due to the higher continuity of pores and the connectivity of alumina platelets, respectively. The anisotropy of the thermal conductivity at room temperature was investigated and explained by the effect of grain size of platelets as well as morphology and orientation of pores. The bending strength was higher with the loading direction along the platelet thickness. The thermal shock strength was clearly different in the two directions. The difference in the thermal shock strength was investigated by the measurement of properties and thermal stress analysis.  相似文献   
55.
Many places experience extreme temperatures below −30 °C, which is a great challenge for the fuel cell vehicle (FCV). The aim of this study is to optimize the strategy to achieve rapid cold start-up of the 30-cell stack at different temperature conditions. The test shows that the stack rapidly starts within 30 s at an ambient temperature of −20 °C. Turning on the coolant at −25 °C show stability of the cell voltage at both ends due to the end-plate heating, however, voltage of intermediate cells fluctuates sharply, and successful start-up is completed after 60 s. The cold start strategy changes to load-voltage cooperative control mode when the ambient temperature reduced to −30 °C, the voltage of multiple cells in the middle of the stack fluctuate more drastic, and start-up takes 113 s. The performance and consistency of the stack did not decay after 20 cold start-up experiments, which indicates that our control strategies effectively avoided irreversible damage to the stack caused by freeze-thaw process.  相似文献   
56.
This study deals with linear and weakly non-linear stability analyses of Brinkman–Bènard convection in nanoliquid-saturated porous enclosures. Water with a dilute concentration of molybdenum disulfide nanoparticles with 0.06 volume fraction and 30% glass fiber-reinforced polycarbonate as a porous medium with porosity 0.88 are considered to be a working medium. The analytical solution is obtained in the present study for idealistic and realistic boundary conditions, and their results are compared. An analytically intractable Lorenz model with quadratic nonlinearities is reduced to a tractable Ginzburg–Landau amplitude equation with cubic nonlinearity using the multiscale method. Nanoparticles with different shapes are considered in the study, and their effects on the onset and heat transfer are discussed in great detail graphically in the presence of other parameters arising in the problem.  相似文献   
57.
Accurate prognosis of limited durability is one of the key factors for the commercialization of proton exchange membrane fuel cell (PEMFC) on a large scale. Thanks to ignoring the structure of the PEMFC and simplifying the prognostic process, the data-driven prognostic approaches was the commonly used for predicting remaining useful life (RUL) at present. In this paper, the proposed cycle reservoir with jump (CRJ) model improves the ESN model, changes the connection mode of neurons in the reservoir and speeds up the linear fitting process. The experiment will verify the performance of CRJ model to predict stacks voltage under static current and quasi-dynamic current conditions. In addition, the reliability of the CRJ model is verified with different amount of data as the training and test sets. The experimental results demonstrate that the CRJ model can achieve better effect in the remaining useful life prognosis of fuel cells.  相似文献   
58.
Water electrolysis is an energy conversion technology to provide green and clean hydrogen energy. Developing a high-efficient and durable electrocatalyst is a critical material for water electrolysis. Therefore, we synthesize a series of iron-doped metal-organic frameworks (MOFs) by a facile one-pot hydrothermal method. In the conventional three-electrode-cell, the Co/Fe (1:1)-MOF catalyst exhibits an overpotential of 317 mV at a current density of 10 mA cm−2 in the oxygen evolution reaction (OER). Furthermore, the electrolysis performance of Co/Fe (1:1)-MOF catalyst is further evaluated in a home-made anion-exchange-membrane water electrolysis cell. With the Co/Fe (1:1)-MOF as the OER catalyst and commercial Pt/C as the hydrogen-evolution-reaction catalyst, the cell presents an overpotential of 490 mV at a large current density of 500 mA cm−2, which is superior to the benchmark cell with commercial IrO2 as the OER catalyst in the alkaline media. Theoretical calculation demonstrates that the introduction of Fe dopant into MOFs significantly reduces the binding energy of 1O and 1OOH intermedium during the OER progress. Consequently, the electrocatalytic activity is increased, which is perfectly consistent with the experimental results. This work suggests that the iron-doped MOFs structure significantly improves the electrocatalytic activity and provides a facile strategy to produce hydrogen at a large current density for industrial water electrolysis.  相似文献   
59.
In view of its important role as raw materials in various energy and environment fields, pure oxygen has been widely required. The present cryogenic distillation, polymeric membrane and pressure swing adsorption (PSA) air separation methods are either energy-intensive or producing non-high purity oxygen. The comparative analysis of the inorganic dense ceramic-based oxygen transport membranes (OTMs) with these traditional oxygen production technologies and the H2/O2 production by electrolysis of water shows irreplaceable advantages. The oxygen transport mechanism has been elaborated further to reveal the theoretical basis for the development of OTMs. The dual-phase membranes that have been widely studied are divided into three types according to the conduction paths of oxygen ions and electrons. Based on a review of the different types of OTM materials experienced in the past 30 years, its applications such as oxygen-enriched combustion involving H2 and membrane reactors have been discussed. Finally, challenges and future directions are analyzed according to potential industrial design directions and competitive technologies of OTMs.  相似文献   
60.
In this study, we investigated the long-term stability of anion exchange membrane water electrolyzers (AEMWEs) under various bias conditions. The cell performance was relatively stable under conditions of voltage cycling in a narrow range, constant voltage and constant current. On the other hand, a relatively dynamic condition, voltage cycling, in a wide range detrimentally affected the cell stability. Abnormally high negative and positive currents were observed when the cell voltage was switched between 2.1 and 0 V. Impedance results and post-material analyses indicated that the performance degradation was mainly due to anode catalyst detachments, which increased non-ohmic resistance in the wide range voltage cycling. An increase in ohmic resistance was also observed, which was due to the membrane dehydration that occurred in the frequent rest times. Thus, it can be said that the voltage cycling range as well as the frequency of rest times are critical operational parameters in determining the long-term stability of AEMWEs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号